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Abstract. A new class of nonlinear evolution equations presented here 

,.P( d & /  d q )2  = c1 4’ + (2) ~ ~ 4 ’ ’ ~  + ())~~4~ + (4) c44”’ 
describes the one-dimensional wave propagation of ion acoustic waves in a magnetised 
plasma with trapped electrons. d, c1,  c 2 ,  c 3 ,  c, are arbitrary constants. The remarkable 
feature of this equation is that a higher-order nonlinear term of 47’2 appears in this 
equation. It is found that this equation has a new type of spiky solitary-wave solution, an 
explosive (bursting) solution and periodic progressive-wave solutions. The explosive 
solution is associated with the wave with the negative potential. Periodic progressive-wave 
solutions are reduced to the spiky solitary wave and the explosive solution under a certain 
condition. This theory may be applicable to explaining the behaviour of higher-order 
nonlinear waves in physical systems. 

1. Introduction 

Several studies of the nonlinear evolution equation have been made in the context of 
nonlinear plasma waves (Gardner and Morikawa 1965, Schamel 1973, Zakharov and 
Kuznetsov 1974, Torven 1986). In the situation where the nonlinear ion acoustic wave 
propagates in interplanetary space, spikey solitary waves and explosive (bursting) 
events are detected by satellites (Gurnett et a1 1979, Temerin et a1 1982, Kintner 1983). 
Although they are caused by the higher-order nonlinearity, little attention has been 
given to such progressive waves. Recently, nonlinear ion acoustic waves in unmag- 
netised plasmas have been studied as the subject of space plasma phenomena (Nejoh 
1987a, 1988). However, higher-order nonlinear ion acoustic waves propagating 
obliquely to the magnetic field in magnetised plasmas have not yet been investigated. 
Zakharov ( 1988) stresses the importance of the higher-order nonlinearity with regard 
to the collapse of three-dimensional Langmuir waves, and mentions that the waves 
with negative energy have the explosive instability. The three-dimensional collapse 
includes one-dimensional phenomena, and has generality for physical phenomena. 
However, ion acoustic waves and the effect of trapped electrons are not considered. 

In this paper, we investigate a nonlinear evolution equation 

d ( d 4 / d T ) 2  = c l ~ 2 + ~ ~ 2 ~ 5 ’ 2 + ~ ~ 3 ~ 3 + ~ ~ 4 ~ 7 ’ 2  

as a model for higher-order nonlinear wave propagation in a one-dimensional mag- 
netised plasma with trapped electrons. d, c1, c 2 ,  c3 and c4 are arbitrary parameters. 
This equation is characterised by the new nonlinear term 4’”; this term has not yet 
been investigated. Nonlinear terms of this equation govern the behaviour of plasma 
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waves where the nonlinear resonant (trapped) electron effect with the deviation from 
the isothermality is stronger than the effect of isothermal electrons. The former effect 
is expressed by the coefficients c2 and c4, and the latter the coefficient c j  in this equation. 
Since such plasma waves usually exist in interplanetary space and are frequently 
observed (Lyons and Williams 1984) as energetic events, the study of this equation is 
significant in real situations. The nonlinear plasma response is described by fluid 
equations and by Poisson’s equation under the quasineutral approximation. The 
quasineutral approximation allows us to study nonlinear waves with finite angles of 
propagation relative to the uniform magnetic field. The approximation requires the 
solutions to have slowly varying electric fields. It is known that the waves can exist 
only when their speed up lies in the range vi cos 8 < up < vi, where ui is the ion acoustic 
velocity ( KTJ M ) ” 2  and T, is the electron temperature. We find that small-amplitude 
solitary waves occur only for up = ui cos 8. It relates these waves to the slow ion acoustic 
wave mode in the case of Boltzman electrons (Lee and Kan 1981). 

The principal object of this paper is to demonstrate a new type of spiky solitary 
wave, an explosive (bursting) solution and periodic progressive wave solutions of a 
class of one-dimensional higher-order nonlinear evolution equations. The author found 
a spiky solitary wave as the stationary solution of the derivative Boussinesq equation 
(Nejoh 1987b), but the present solitary wave is a new one. It will be expected that 
these solutions extend the scheme of well established nonlinear evolution equations 
and that this investigation may be applied to explaining the behaviour of larger- 
amplitude nonlinear waves propagating in plasmas. 

The layout of this paper is as follows. In section 2 we consider the nonlinear 
propagation of one-dimensional ion acoustic waves propagating obliquely to the 
uniform magnetic field in the plasma with trapped electrons. The derivation of a model 
equation is presented from the basic equations. In section 3 the stationary solutions 
of this equation are shown. These are the spiky solitary wave and the explosive mode. 
In section 4, we derive periodic progressive wave solutions. These are described by 
the elliptic functions, and are reduced to the spiky solitary wave and the explosive 
solution in the limit of a certain parameter going to zero. The last section is devoted 
to concluding discussions. 

2. A model equation 

We begin by considering one-dimensional nonlinear ion acoustic waves propagating 
obliquely to the direction of the magnetic field in a uniformly magnetised plasma 
composed of free electrons, trapped electrons and cold ions. The scale length of the 
wave is assumed to be large compared to the ion cyclotron (gyro) radius and its 
propagation velocity up satisfies uT,<< up<< uT,, where uT, and uTC are the thermal 
velocities of ions and electrons, respectively. We assume that the small-but-finite 
amplitude ion acoustic wave propagates in the x direction and makes an angle 8 to 
the direction of the magnetic field B, and that the magnetic field is in the x, z plane. 
Since the electron inertia is neglected for low-frequency oscillations of ion acoustic 
waves, the electron velocity is cancelled with the help of the equations of the electric 
field; the motions of electrons can therefore be ignored. 

The fluid description used in this investigation can be justified by the fact that we 
are interested in the macroscopic, average nonlinear behaviour of the magnetised 
plasma rather than the microscopic properties, i.e. the motion of individual particles. 
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This justification can be further supported by the space and time scales involved in 
this nonlinear problem. We consider the low-frequency motion of the ion acoustic 
wave and assume that the longitudinal ion acoustic wave propagates parallel to the 
electric field. We hence observe the electrostatic ion acoustic wave in a magnetised 
plasma. 

The dynamics of the ion fluid in this system is described by 
continuity, and of momentum transfer, and Poisson’s equation. 
form, they appear as 

an 
- + V n v = O  
a t  

V P  
n 

(:+ U. v) tr + v+ = --+ 0 x t?B 

AZ, 2 - - y V  # J + n - n , = O .  
P 

the equations of ion 
In non-dimensional 

( l a )  

(1b)  

(IC) 

Here, the ion density n, the ion pressure P, the time t and the velocity U are normalised 
by the background plasma density no,  noT,, the ion cyclotron frequency a( = e B / c M )  
and the ion acoustic velocity U,, respectively. M and c are the ion mass and light 
velocity, respectively. The Debye length A D  = ( E,,KT,/ noe2)1’2 and the ion cyclotron 
radius p = q/n. T, is the effective electron temperature given by Ti ’  = ( l / e ) ( a n , / a @ )  
(for CD = 0), where 4 = &/KT, is the dimensionless potential. eB is a unit vector along 
the magnetic field B. 

In order to specify the components of equations (1) we use a double adiabatic 
equation of state for ions (Schmidt 1979) with parallel and perpendicular pressure 
components pll = a n y [  and p I  = anyL, where a = Ti/ T,. yll and yL are the parallel and 
perpendicular adiabatic indices which are taken to be 3 and 1,  respectively. These 
values are determined by the correspondence between the linear fluid and kinetic 
dispersion relations in the quasineutral limit. AD/p + 0. Since the electrons are assumed 
to be of zero inertia and strongly magnetised, their density can be found by the potential 
from the stationary Vlasov equation in the drift approximation (Akhiezer et a1 1975). 

Each components of equations ( l ) ,  which satisfies the conditions mentioned above, 
can be written as 

an a -+- ( n v , )  = 0 
at ax 

a4 
(aat a:) ax 
-+U,- U,+-= U, sin 8 

( $ + u, s) vy = - u, sin e + u, cos 6 

The space coordinate x is normalised by the ion cyclotron radius p. 
We use 

4 = 4(1)) 

1 ) = x - s t  
and a variable 

(3) 
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where s denotes the velocity of 
Equations ( 2 a )  and ( 2 6 )  yield 

v, = s( 1 - ;) 
the moving frame (Goswami and Bujarubarua 1986). 

respectively. Equations ( 2 c )  and ( 2 d )  reduce to 

1 av, 1 %= ( n  - 1 )  sin e- -  nu, cos e 
a‘r7 S a 7  s 

- nu, cos 8. 

Then U, is obtained as 

U, =- S e ( - s2(  1 -!-) + Iod n ( 4 )  dd). 

by integrating 

Eliminating the velocity components from equations (2) and using 

a a4 a 
a7-av  a+’ 

we obtain 

where 

1 a n  
d ( n )  = 1 -s’ - - 

n 3  a4* 
“U( 4) denotes the potential function. We used the boundary conditions 

n + l  u,+O at v+co. 
We consider the plasma which satisfies the following conditions: the amplitude of 

the ion acoustic wave is small, the plasma is quasineutral and the ion cyclotron radius 
is much larger than the electron Debye length. In this case we can substitute the 
electron density for the ion density in equation (4). In order to study the effect of 
trapped electrons, we introduce the electron density derived from the Vlasov equation, 
which consists of free and trapped electrons (Schamel 1973). The electron density is 
expressed as 

cc 

n e ( 4 )  = fe(x, U )  du 

= exp( 4 )  erfc( 4”*) 

where f e ( x ,  U )  and p indicate the electron distribution function and the ratio between 
the free and trapped electron temperature, Tf/ T,, respectively. We use the Maxwellian 
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distribution for free and trapped electrons, and perform the Taylor expansion of 
equation ( 5 )  under the condition 4 << 1 .  Equation (5 )  thus reduces to 

Considering up to the fifth term of equation ( 6 ) ,  we rewrite the right-hand side of 
equation (4) as 

where 

4(1 - P )  c 2 =  -~ COS* e 
c, = 1 -- 

S 2  3T’/* 

c - -  1 - 3 -  
3 - ;  ( e) 

and 

d = 1 - s 2 .  

Substituting equation (7)  into equation (4) and integrating once, equation (4) becomes 

under the boundary conditions 

4, 4q,4qq--* 0 atIrlI+* 

where the subscript denotes partial differentiation. 

3. Spiky solitary waves and explosive solutions 

In order to solve equation (8), we set 

4(7?) = $*(d. 
Equation (8) is then transformed to 

( J / q ) * =  $’(ai -a2$-a3$2-a443) 

= -W*)  
= O  

where the parameters a , ,  a,, a3 and a4 stand for 

c2 c3 a c4 
7 4 ‘  a 4 -  6 4  3 -  a2 = -- Cl a -- 

‘ - 4 4  5d 

(9) 

We observe that equation (11) is an equation which determines the trajectory of a 
particle with unit mass when the potential V ( 4 )  is given. 
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Now we are going to study the solitary-wave solutions and explosive solutions that 
follow from equation (11). We transform equation (11) to 

provided that 

a3 cpo= --. 4 ala: A = a4 3a,a4= a: s = - 3  - 
a: 3 a4 

If a ,  > 0, a, > 0; a3 < 0, a4 > 0 and A > 0, then s > 0 and cpo > 0. We show the relation 
between IC, and V ( + )  in figure 1. The solutions which satisfy equations (11) and (12) 
exist in the upper region of the horizontal (+) axis in figure 1. 

Integrating equation (12) and using the boundary conditions 

*, * q ,  4,, + 0 at1771+m (13)  

we obtain 
1 / 2  3 / 2  * $ A  cpo (77-770) 

Figure 1. The potential function V ( @ )  plotted against the coordinate @. $ J ~ ( $ ~ ,  'pO, 7) and 
&(bo, 'pO, 7) denote the spiky solitary wave corresponding to the region O <  d'/2<po 
and the explosive (bursting) solution corresponding to the region $'I2 < 0, respectively. 
The arrow indicates the peak position X2($J0, cpO) of &(do, 'pO, 7). 
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in the region 0 < $( 7) < coo. Here 
equation ( lo) ,  we obtain 

denotes the maximum amplitude. Returning to 

for O <  4(40, (pa, T)”* < coo, provided that $: from equation (10). We illustrate 
the wave profile of equation (15) in figure 1. Equation (15) forms a spiky solitary wave. 

Similarly, we obtain 
1/2 3 /2  *+A coo (77-770) 

in the region $( 77) < 0. Returning to the original expression, we have 

4440, coo, 77) 

= cp; cosech4 

X 2 ( d O ,  cpo) = ( coo - 4Y2 )1’2-coth-1( 
1 /2  1 / 2  

) 
for d(40, coo, ~ ) ” ~ < 0 ,  where is already determined. Equation (17) takes an 
explosive profile at *4A1’2qi’2( 7) - rl0) + X2( bo, coo), which is illustrated again in 
figure 1. 

4. Periodic progressive wave solutions 

In this section, returning to equation (1 1 ), we investigate stationary periodic progressive 
wave solutions. 

We introduce the variable 

v ( 7 )  = - i ( a , $ + i a , ) .  (18) 

( 0, )2  = g:( - g1 )2(4 v 3  - g2 0 - g3 1 (19) 

By use of equation (18), equation (11) is transformed to 

where g o ,  g , ,  g ,  and g ,  are determined to be 

4 a3 
go = - g1= -12 

a4 

rL2 2 - 12a3 -Za2a4 g3=8($ )3 -&a2a3a4-a , ( : )2 .  

Integrating equation (19), we obtain 
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where T~ is the integration constant. X( U )  denotes the third kind of Weierstrass integral. 
Referring to the Weierstrass b function with the parameters g ,  , g ,  and g , ,  we make 
the following transformations (Terasawa 1954): 

c ( f 0 )  = g , .  

Here the b(  f )  function is defined by 

where Zk,n denotes the sum over all m, n except the case where m = n = 0 and R is 
the pole of b(  f) .  This pole is defined by 

a =  2 w ,  m + 2w,n 

where the integers m, n = 0, * l ,  * 2 ,  . . . . 2 w ,  and 2w3 are periods of the &(  f) function. 
w ,  and w 3  are defined by 

du e3 d 21 
= I:: (4u3 - gzu - g, ) l /2  I_, [ - ( 4 u 3 - g 2 u - g 3 ) ] 1 / 2  

where e ,  and e ,  are determined from the equations 

4 u 3 -  g2u - g3 = 4(u - e l ) (  U - e 2 ) ( u  - e , ) ,  

and 

e ,  + e , +  e ,  = 0 

e : + e : + e : = t g ,  

Without loss of generality, we assume that 

e2e3 + e3e1+ e ,  e ,  = - ag, 

e ,  e2e3 = t g ,  . 

g:  - 27g: > 0 e ,  > e2 > e 3 .  

Using the l( f) function and a( f )  function, we transform the integral X( U )  to 

d f  

We note that l( f )  function is connected with the a( f )  function as follcws: 

Here a ( f )  is defined by 
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provided that nk,, denotes the infinite product over all m, n except the case where 
m = n = 0.  We used the definition 

On the other hand, the l(f) function is defined as 

Differentiating both sides of equation (26), we obtain 

d c(f)  = -- 5 ( f )  (27) 
d f  

from equation (22). Substituting equation (23) into equation (27), we get 

d2 c(f) = -- lnlu(f)l. (28) 
d f  

We therefore obtain 

from equations (23), (24) and (28). 

the equations 
Substituting equation (25) into equation (29) under the condition fo> 0, we have 

in the region -fo<f<fo, and 

in the region -fo> 0, or f > f o ,  where 

9(f(t))) =f[w-+fo)-s(f-fo)l 
and 

1 
lnb2(fo) l .  (*€!o)w(fo)/af 77, = 

From equations (18) and (21), $(v) is reduced to 

We determine the periodic-wave solutions as $ l (v)  and $*(r)) corresponding to the 
functions f i (  t)) and ft(t)), respectively, and thereby equation (33) is reduced to 
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and 

In order to express the h(f) function in terms of Jacobi’s sn(f) function, we apply 
(Toda 1976) 

u1(7))= ul(fl(77))=h(fl(77)) = e3+(eZ-e3)f:(77) (36) 

and 

dfl 
[ ( l  -ft)(l- k 2 f : ) ] ‘ / * ’  

- - 

to equation (34), provided that 

k 2 = - .  e2 - e3 
el - e3 

From the relation 

(37) 
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Returning to equation (10) and using equations (41) and (45), we express 4(q, k )  
by Jacobi’s sn(f( q), k )  function. Determining the periodic-wave solutions as c$,( q, k) 
and 42(7), k) corresponding to the function (cll(q) and &(q), respectively, we finally 
obtain 

and 

Equations (46) and (47) imply the periodic progressive wave solutions corresponding 
to the region O <  +”’< (po and 4’I2<O in figure 1, respectively. 

If we take the limit k -, 1 in equation (46), we obtain the spiky solitary-wave solution 
(15). In addition, the same limit k -, 1 in equation (47) yields the explosive solution 
(17). It is because sn[f(q, k)]+ tanh[f(q), 13 in the limit k-, 1. 

5. Concluding discussion 

We have presented a new nonlinear evolution equation derived from the one- 
dimensional nonlinear ion acoustic wave propagating obliquely to the magnetic field 
in a magnetised plasma with trapped electrons. This equation has a new higher-order 
nonlinear term. Equation (8) describes the behaviour of the plasma physical system 
in which the higher-order nonlinearity competes with the dispersion effect. The station- 
ary solutions of this equation are obtained due to the higher-order nonlinearity, and 
bear the spiky solitary-wave solution, the explosive solution and periodic progressive- 
wave solution. It should be noted that the explosive solution eventually will make the 
ordering in the derivation of the higher-order nonlinear evolution equation break down. 
In addition, the explosive solution is associated with the wave with negative potential. 
The periodic progressive-wave solutions are reduced to the spiky solitary-wave solution 
and the explosive solution, in the limit k -, 1. It is worthwhile to note that the formation 
of these solutions remarkably depends on the signs of the parameters c , ,  c 2 ,  c3 and 
c4, and that the transformation from equation (11) to equation (12) holds only under 
special conditions on the parameters a, ,  a2, a3 and a4.  These new solutions appear 
to make a step forward in the general scheme of nonlinear normal modes for long 
waves. It is worth noticing that, although the present solutions are derived for the 
one-dimensional potential, these results are similar to those derived in the three- 
dimensional collapse of Langmuir waves (Zakharov 1988) and to those of the electric 
field structure of collapsing wavepackets in Langmuir turbulence (Newman et a1 1989). 

The present results have crucial importance when we discuss nonlinear ion acoustic 
waves in plasmas where the nonlinear resonant (trapped) electron effect with the 
deviation from the isothermality is stronger than the effect of the isothermal electrons. 
Stationary-wave solutions presented here have to satisfy the conditions c, > 0, c2 > 0, 
c3 < 0, c4> 0 and s > 0; these solutions are valid only under these conditions. In this 
case, it is evident that a, > 0, a2 > 0, a3 < 0 and a4 > 0. When the plasma parameters 
satisfy 

O.166Tt< Tf< T, COS-‘ 3- ’12  < e < .rr/2 
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then 0 < s < 1 and do > 0 hold. The author therefore stresses that these conditions are 
highly relevant for the given physical problem. In actual situations, spiky ion acoustic 
solitary waves and solar radio burst events associated with trapped electrons are 
frequently observed in interplanetary space (Gurnett et al 1979, AlfvCn 1981, Temerin 
et a1 1982, Lin et a1 1986). Hence, referring to the present spiky solitary waves, 
explosive (bursting) modes and periodic progressive waves, we can understand the 
properties of ion acoustic waves where the higher-order nonlinearity is essential in 
space plasmas. 

Although the author has not examined the application of these results to a specific 
observational result, this investigation is important in discussing the higher-order 
nonlinear wave modes. This theory is therefore applicable to another nonlinear 
progressive waves in physical systems. 
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